

open 👌 access

Crystal structure of 1'-ethylspiro-[chroman-4,4'-imidazolidine]-2',5'-dione: a hydantoine derivative

S. B. Benaka Prasad,^a S. Naveen,^b M. Madaiah,^c N. K. Lokanath,^d Ismail Warad^e and Muneer Abdoh^f*

^aDepartment of Chemistry, School of Engineering and Technology, Jain University, Bangalore 562 112, India, ^bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^eDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories, and ^fDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories. *Correspondence e-mail: muneer@najah.edu

Received 20 August 2015; accepted 29 August 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title compound, $C_{13}H_{13}N_2O_3$, a hydantoin derivative, crystallized with two molecules (*A* and *B*) in an asymmetric unit. In molecule *A*, the imidazolidine ring is twisted about the C–N bond involving the spiro C atom, while in molecule *B* this ring is flat (r.m.s. deviation = 0.010 Å). The pyran rings in both molecules have distorted half-chair conformations. The mean plane of the imidazolidine ring is inclined to the aromatic ring of the chroman unit by 79.71 (11)° in molecule *A* and 82.83 (12)° in molecule *B*. In the crystal, pairs of N–H···O hydrogen bonds link the individual molecules to form A-A and B-B inversion dimers. The dimers are linked *via* N–H···O and C–H···O hydrogen bonds, forming sheets lying parallel to the *bc* plane, *viz*. (011). Within the sheets, the *A* and *B* molecules are linked by C–H··· π interactions.

Keywords: crystal structure; hydantoin derivatives; imidazolidine; chroman; spiro; hydrogen bonding; $C-H\cdots\pi$ interactions.

CCDC reference: 1421223

1. Related literature

For related literature on hydantoin derivatives, see: Manjunath et al. (2011, 2012).

2. Experimental

2.1. Crystal data

2.2. Data collection

14480 measured reflections
3990 independent reflections
3195 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.054$

2.3.	Refinement
------	------------

$vR(F^2) = 0.185$ H-atom parameters constrained	ined
$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1Hydrogen-bond geometry (Å, °).

Cg is the centroid of ring C1A-C6A.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2A - H2A \cdots O3A^{i}$	0.86	2.06	2.857 (3)	155
$N2B - H2B1 \cdots O3B^{ii}$	0.86	2.44	3.019 (3)	124
$N2B - H2B1 \cdots O2A^{iii}$	0.86	2.55	3.290 (3)	145
$C1A - H1A \cdots O3A^{iv}$	0.93	2.45	3.263 (4)	146
$C2B - H2B \cdots O2A^{v}$	0.93	2.58	3.501 (4)	173
$C7B - H7B2 \cdots Cg^{iii}$	0.93	2.99	3.680 (3)	129

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y, -z; (iii) x, y - 1, z; (iv) x - 1, y, z; (v) -x + 1, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine

data reports

structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

Acknowledgements

The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5194).

References

- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Deepa Naveen, M. V., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2011). J. Struct. Chem. 52, 959–963.
- Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2012). J. Chem. Crystallogr. 42, 504–507.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o705–o706 [doi:10.1107/S2056989015016175]

Crystal structure of 1'-ethylspiro[chroman-4,4'-imidazolidine]-2',5'-dione: a hydantoine derivative

S. B. Benaka Prasad, S. Naveen, M. Madaiah, N. K. Lokanath, Ismail Warad and Muneer Abdoh

S1. Comment

Hydantoins are important precursors in the organic synthesis of natural and non-natural amino acids, *via* acid-, base- or enzyme-catalyzed hydrolysis. The hydantoin nucleus, containing an active urea moiety, is well known for its diverse biological activities such as lowering blood sugar levels in mammals, and anti-inflammatory and anti-microbial activity. Considerable interest has been shown towards the synthesis and characterization of hydantoin derivatives which is a novel class of heterocyclic compounds. As a part of our ongoing research on hydantoins (Manjunath *et al.*, 2011, 2012), the synthesis, characterization and the structural work of the title compound was undertaken and herein we report on its crystal structure.

The title compound, Fig. 1, an hydantoin derivative, crystallized with two molecules (A and B) in an asymmetric unit. In molecule A the imidazolidine ring is twisted about the C9A—N2A bond, while in molecule B this ring is flat (r.m.s. deviation = 0.010 Å). The pyran rings of the chroman units in both molecules have distorted half-chair conformations. The mean plane of the imidazolidine ring is inclined to the aromatic ring of the chroman unit by 79.71 (11) ° in molecule A and 82.83 (12) ° in molecule B.

In the crystal, pairs of N—H···O hydrogen bonds link the individual molecules to form A–A and B–B inversion dimers (Fig. 2 and Table 1). The dimers are linked via N—H···O and C—H···O hydrogen bonds forming sheets lying parallel to the bc plane, viz. (011); see Fig. 2 and Table 1. Within the sheets the A and B molecules are linked by C—H··· π interactions (Table 1).

S2. Synthesis and crystallization

A solution of 3-ethyl-5-(isochromon) imidazolidine-2, 4-dione (1.0 eq) in *N*,*N*-dimethyl formamide was taken, anhydrous K_2CO_3 (3.0 eq) was added to the solution and stirred for 10 min. 1-bromo-ethane (1–1.1eq) was added. The reaction mixture was stirred at room temperature for 8 h and the progress monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. The organic was washed with water and then and dried over anhydrous sodium sulfate. The solvent was evaporated and the crude product was purified by column chromatography using chloroform: methanol (9:1) as eluent. Single crystals were obtained by slow evaporation of a solution of the title compound in ethylacetate (M.p.: 572.1 K). Spectroscopic data: H¹NMR (DMSO, 400 MHz) δ : 8.9 (s, 1H, NH), δ : 6.9(m, 3H, Ar—H) δ : 7.3 (m, 1H, Ar—H) δ : 4.5(m, 2H, CH₂) δ : 2.5(m, 2H, CH₂) δ : 1.1(m, 3H, CH₃).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were fixed geometrically (N—H = 0.86 Å, C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.5U_{eq}(C-V)$

methyl) and $1.2U_{eq}(N,C)$ for other H atoms.

Figure 1

A view of the molecular structure of the two independent molecules of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A viewed along the c axis of the crystal packing of the title compound (molecule A blue, molecule B red). The dashed lines represent hydrogen bonds (see Table 1; H atoms are shown as blue and red balls).

1'-Ethylspiro[chroman-4,4'-imidazolidine]-2',5'-dione

Z = 4
F(000) = 520
$D_{\rm x} = 1.341 {\rm Mg} {\rm m}^{-3}$
Cu K α radiation, $\lambda = 1.54178$ Å
Cell parameters from 3990 reflections
$\theta = 4.0-64.6^{\circ}$
$\mu = 0.80 \text{ mm}^{-1}$
T = 296 K
Rectangle, green
$0.23 \times 0.22 \times 0.21 \text{ mm}$
$T_{\min} = 0.838, T_{\max} = 0.850$
14480 measured reflections
3990 independent reflections
3195 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.054$
$\theta_{\rm max} = 64.6^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$
$h = -11 \rightarrow 11$
$k = -12 \rightarrow 12$
$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters constrained
$wR(F^2) = 0.185$	$w = 1/[\sigma^2(F_o^2) + (0.1316P)^2 + 0.1551P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3990 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
328 parameters	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.025 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
01B	0.57043 (18)	0.04669 (17)	0.27294 (15)	0.0534 (5)	
N2A	0.88853 (16)	0.57988 (16)	0.41739(15)	0.0350(4)	
H2A	0.8777	0.5352	0.4778	0.042*	
03A	1 12385 (15)	0.6202	0 42909 (15)	0.0458(4)	
02A	0.80600(17)	0.02101(10) 0.76449(16)	0.12909(10) 0.18917(14)	0.0492(5)	
C9B	0.8442(2)	0.1368(2)	0.10917(11) 0.20830(18)	0.0377(5)	
NIR	1.06259(18)	0.1500(2) 0.25381(17)	0.20030(10) 0.18235(17)	0.0377(3)	
O3B	1.12728 (19)	0.25561(17) 0.1008(2)	0.10255(17) 0.08118(19)	0.0724(6)	
03B 02B	0.9417(2)	0.1000(2) 0.35827(19)	0.00110(1)) 0.2803(2)	0.0767(0)	
C2B	0.9417(2) 0.4752(3)	0.33627(17) 0.1850(2)	0.2005(2)	0.0707(7)	
U2D U2D	0.4752 (5)	0.1078	-0.0437	0.0532 (0)	
C1D	0.3902	0.1978 0.1271 (2)	0.0437	0.004°	
	0.4685 (2)	0.1271 (2)	0.1051 (2)	0.0461 (6)	
HIB	0.3851	0.1010	0.1327	0.055*	
C6B	0.5869 (2)	0.10716 (19)	0.17046 (19)	0.0364 (5)	
C5B	0.7129 (2)	0.14862 (18)	0.13279 (17)	0.0326 (5)	
C10B	0.9517 (2)	0.2642 (2)	0.2298 (2)	0.0428 (6)	
C12B	1.1849 (3)	0.3580 (3)	0.1783 (3)	0.0597 (7)	
H12A	1.2625	0.3246	0.1728	0.072*	
H12B	1.2061	0.4116	0.2519	0.072*	
C13B	1.1641 (4)	0.4335 (3)	0.0750 (3)	0.0881 (11)	
H13A	1.1406	0.3802	0.0022	0.132*	
H13B	1.2472	0.4982	0.0729	0.132*	
		· · · ·			

11120	1 0011	0.4711	0.0020	0.120*
HI3C	1.0911	0.4/11	0.0829	0.132*
CUB	1.0424 (2)	0.1332(2)	0.1297 (2)	0.0418 (5)
N2B	0.9179 (2)	0.06477 (17)	0.14631 (19)	0.0458 (5)
H2B1	0.8847	-0.0135	0.1229	0.055*
C7B	0.6800 (3)	-0.0049 (3)	0.3177 (3)	0.0671 (8)
H7B1	0.6795	-0.0746	0.2636	0.081*
H7B2	0.6665	-0.0367	0.3951	0.081*
C8B	0.8153 (3)	0.0914 (3)	0.3303 (2)	0.0624 (8)
H8B1	0.8875	0.0557	0.3662	0.075*
H8B2	0.8150	0.1622	0.3829	0.075*
C3B	0.5997 (3)	0.2246 (2)	-0.0401 (2)	0.0564 (7)
H3B	0.6043	0.2632	-0.1117	0.068*
C4B	0.7163 (3)	0.2068 (2)	0.0259 (2)	0.0472 (6)
H4B	0.7996	0.2343	-0.0016	0.057*
C2A	0.4997 (3)	0.7412 (3)	0.5220 (3)	0.0669 (9)
H2A1	0.4398	0.7705	0.5619	0.080*
C1A	0.4498 (3)	0.6678 (3)	0.4165 (3)	0.0624 (8)
H1A	0.3566	0.6473	0.3852	0.075*
C6A	0.5395 (2)	0.6243 (2)	0.3564 (2)	0.0426 (5)
C5A	0.6788 (2)	0.65461 (17)	0.40196 (18)	0.0321 (5)
C9A	0.77539 (19)	0.60575 (17)	0.33690 (17)	0.0301 (5)
C10A	0.8545 (2)	0.70485 (19)	0.26353 (18)	0.0334 (5)
N1A	0.98963 (18)	0.71123 (17)	0.29492 (16)	0.0379 (5)
C12A	1.1017 (2)	0.7874 (2)	0.2399 (2)	0.0506 (6)
H12C	1.0633	0.8149	0.1652	0.061*
H12D	1.1604	0.7359	0.2214	0.061*
C13A	1 1862 (4)	0 8994 (3)	0.3188 (3)	0.0823(10)
H13D	1 1278	0.9484	0.3410	0.123*
H13E	1 2535	0.9495	0.2768	0.123*
H13E	1 2317	0.8727	0.3896	0.123*
C11A	1.2317 1.0107(2)	0.63310 (19)	0.38692 (18)	0.0338 (5)
C8A	0.6010(2)	0.05510(17)	0.36092(10)	0.0338(5)
	0.0919(2) 0.7401	0.4656	0.2007	0.0440 (3)
	0.6625	0.4050	0.2027	0.053*
HoA2	0.0023	0.4191	0.3039	0.055°
	0.3074 (3)	0.5145 (2)	0.1815 (2)	0.0556 (0)
H/AI	0.5976	0.5809	0.1295	0.064*
H/A2	0.5160	0.4396	0.1308	0.064*
OIA	0.48007 (17)	0.55034 (18)	0.25570 (17)	0.0615 (5)
C4A	0.7264 (3)	0.7287 (2)	0.5093 (2)	0.0455 (6)
H4A	0.8194	0.7496	0.5413	0.055*
C3A	0.6370 (4)	0.7718 (3)	0.5691 (3)	0.0632 (8)
H3A	0.6699	0.8212	0.6408	0.076*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	U ²³
O1B	0.0430 (10)	0.0677 (11)	0.0567 (10)	0.0183 (8)	0.0215 (8)	0.0207 (8)
N2A	0.0209 (9)	0.0421 (9)	0.0451 (10)	0.0126 (7)	0.0050 (7)	0.0174 (7)

O3A	0.0213 (8)	0.0583 (9)	0.0611 (10)	0.0156 (7)	0.0050 (6)	0.0213 (8)
O2A	0.0424 (10)	0.0625 (10)	0.0488 (9)	0.0236 (8)	0.0055 (7)	0.0259 (8)
C9B	0.0305 (12)	0.0451 (11)	0.0411 (11)	0.0170 (9)	0.0061 (9)	-0.0006 (9)
N1B	0.0270 (10)	0.0398 (9)	0.0558 (11)	0.0071 (8)	0.0002 (8)	-0.0040 (8)
O3B	0.0336 (11)	0.0931 (14)	0.0857 (14)	0.0227 (10)	0.0111 (9)	-0.0303 (11)
O2B	0.0564 (13)	0.0689 (12)	0.0997 (16)	0.0263 (10)	-0.0094 (10)	-0.0475 (11)
C2B	0.0434 (15)	0.0453 (13)	0.0651 (16)	0.0159 (11)	-0.0148 (11)	-0.0012 (11)
C1B	0.0276 (12)	0.0452 (12)	0.0655 (15)	0.0129 (9)	0.0036 (10)	-0.0038 (11)
C6B	0.0328 (12)	0.0355 (10)	0.0421 (12)	0.0106 (8)	0.0084 (9)	-0.0007 (8)
C5B	0.0298 (11)	0.0333 (10)	0.0357 (10)	0.0106 (8)	0.0058 (8)	-0.0015 (8)
C10B	0.0348 (13)	0.0447 (12)	0.0476 (12)	0.0170 (10)	-0.0053 (9)	-0.0139 (10)
C12B	0.0346 (15)	0.0528 (14)	0.0792 (18)	-0.0012 (11)	-0.0063 (12)	0.0069 (13)
C13B	0.074 (2)	0.075 (2)	0.094 (2)	-0.0069 (17)	-0.0054 (18)	0.0300 (18)
C11B	0.0268 (12)	0.0500 (12)	0.0499 (12)	0.0164 (9)	0.0025 (9)	-0.0078 (10)
N2B	0.0318 (11)	0.0342 (9)	0.0725 (13)	0.0116 (7)	0.0105 (9)	-0.0106 (9)
C7B	0.0629 (19)	0.0815 (19)	0.0674 (18)	0.0299 (16)	0.0187 (14)	0.0356 (15)
C8B	0.0511 (17)	0.092 (2)	0.0509 (15)	0.0309 (15)	0.0064 (12)	0.0217 (14)
C3B	0.0576 (17)	0.0580 (15)	0.0461 (14)	0.0104 (12)	-0.0067 (11)	0.0136 (11)
C4B	0.0402 (14)	0.0547 (13)	0.0423 (12)	0.0055 (10)	0.0054 (10)	0.0088 (10)
C2A	0.072 (2)	0.0721 (18)	0.080 (2)	0.0415 (16)	0.0448 (17)	0.0179 (16)
C1A	0.0340 (15)	0.0741 (18)	0.092 (2)	0.0266 (13)	0.0259 (13)	0.0158 (16)
C6A	0.0264 (12)	0.0478 (12)	0.0557 (13)	0.0132 (9)	0.0069 (9)	0.0077 (10)
C5A	0.0258 (11)	0.0324 (9)	0.0413 (11)	0.0114 (8)	0.0075 (8)	0.0094 (8)
C9A	0.0208 (10)	0.0326 (9)	0.0379 (10)	0.0104 (8)	0.0010 (8)	0.0066 (8)
C10A	0.0288 (11)	0.0376 (10)	0.0374 (10)	0.0148 (8)	0.0056 (8)	0.0069 (8)
N1A	0.0258 (10)	0.0475 (10)	0.0439 (10)	0.0124 (8)	0.0093 (7)	0.0179 (8)
C12A	0.0373 (14)	0.0639 (15)	0.0531 (14)	0.0111 (11)	0.0164 (10)	0.0229 (12)
C13A	0.073 (2)	0.0676 (18)	0.089 (2)	-0.0131 (16)	0.0168 (18)	0.0178 (17)
C11A	0.0250 (11)	0.0387 (10)	0.0405 (11)	0.0130 (8)	0.0051 (8)	0.0103 (8)
C8A	0.0361 (13)	0.0371 (11)	0.0572 (13)	0.0133 (9)	-0.0016 (10)	-0.0067 (10)
C7A	0.0405 (15)	0.0555 (14)	0.0571 (15)	0.0112 (11)	-0.0091 (11)	-0.0111 (11)
O1A	0.0232 (9)	0.0751 (12)	0.0782 (13)	0.0112 (8)	-0.0085 (8)	-0.0123 (10)
C4A	0.0445 (14)	0.0475 (12)	0.0451 (12)	0.0148 (10)	0.0053 (10)	0.0031 (10)
C3A	0.088 (2)	0.0586 (15)	0.0546 (15)	0.0319 (15)	0.0275 (15)	0.0039 (12)

Geometric parameters (Å, °)

01B—C6B	1.367 (3)	C8B—H8B1	0.9700	
O1B—C7B	1.422 (3)	C8B—H8B2	0.9700	
N2A—C11A	1.335 (3)	C3B—C4B	1.373 (4)	
N2A—C9A	1.458 (2)	СЗВ—НЗВ	0.9300	
N2A—H2A	0.8600	C4B—H4B	0.9300	
O3A—C11A	1.224 (2)	C2A—C3A	1.373 (5)	
O2A—C10A	1.213 (2)	C2A—C1A	1.373 (5)	
C9B—N2B	1.463 (3)	C2A—H2A1	0.9300	
C9B—C5B	1.518 (3)	C1A—C6A	1.393 (3)	
C9B—C8B	1.528 (3)	C1A—H1A	0.9300	
C9B—C10B	1.528 (3)	C6A—O1A	1.363 (3)	

N1B—C10B	1.356 (3)	C6A—C5A	1.387 (3)
N1B—C11B	1.397 (3)	C5A—C4A	1.392 (3)
N1B—C12B	1.468 (3)	С5А—С9А	1.513 (3)
O3B—C11B	1.217 (3)	C9A—C10A	1.529 (3)
O2B—C10B	1.208 (3)	C9A—C8A	1.537 (3)
C2B—C1B	1.368 (4)	C10A—N1A	1.356 (3)
C2B—C3B	1.385 (4)	N1A—C11A	1.402(3)
C2B—H2B	0.9300	N1A—C12A	1467(3)
C1B—C6B	1 394 (3)	C12A - C13A	1 489 (4)
C1B—H1B	0.9300	C12A - H12C	0.9700
C6B-C5B	1 386 (3)	C12A - H12D	0.9700
C5B-C4B	1 389 (3)	C13A—H13D	0.9600
C_{12B} C_{13B}	1.309(3) 1.480(4)	C13A—H13E	0.9600
C12B— $H12A$	0.9700	C13A—H13F	0.9600
C12B_H12B	0.9700		1.512(3)
C13B_H13A	0.9600		0.9700
C13B H13B	0.9600		0.9700
C13P H13C	0.9000		1.421(3)
C11D N2D	0.9000		1.421(3)
NID HIDI	1.343(3)	C/A - H/AI	0.9700
$N2D - \Pi 2D1$	1.401(4)	$C/A - \pi/AZ$	0.9700
	1.491 (4)		1.380 (4)
C/B—H/B1	0.9700	C4A - H4A	0.9300
C/B-H/B2	0.9700	СЗА—НЗА	0.9300
C6B - O1B - C7B	114 36 (18)	C3B-C4B-C5B	1216(2)
C11A - N2A - C9A	112 58 (16)	C3B - C4B - H4B	119.2
$C_{11A} = N_{2A} = H_{2A}$	123.7	C5B-C4B-H4B	119.2
C9A = N2A = H2A	123.7	C3A - C2A - C1A	119.2 120.7(2)
N2B-C9B-C5B	113 58 (17)	C_{3A} C_{2A} H_{2A1}	119.7
N2B-C9B-C8B	114 36 (19)	C1A - C2A - H2A1	119.7
C5B-C9B-C8B	110.01(18)	$C^{2}A - C^{1}A - C^{6}A$	119.7
N2B-C9B-C10B	100.06 (16)	C_{2A} C_{1A} H_{1A}	120.2
C5B-C9B-C10B	100.00(10) 110.45(17)	$C_{2}A = C_{1}A = H_{1}A$	120.2
$C_{3}B = C_{3}B = C_{1}OB$	107.8(2)	O1A C6A C5A	120.2
C_{10} N1B C_{11} C11B	107.8(2)	OIA = COA = CJA	125.90(19) 115.4(2)
CIOR NIR CI2R	111.30(19) 124.7(2)	$C_{1A} = C_{0A} = C_{1A}$	113.4(2) 120.7(2)
$C_{11} = N_{11} = C_{12} = C_{12}$	124.7(2) 123.6(2)	C5A = C0A = C1A	120.7(2) 118.42(10)
C1D = C1D = C2D	123.0(2)	C6A C5A C9A	110.42(19) 120.24(10)
C1D - C2D - C3D	120.0 (2)	C0A - C5A - C9A	120.34(19) 121.22(19)
C_{1D} C_{2D} C_{1D} C_{2D} C	120.0	C4A - C5A - C5A	121.23(10) 112(10(16))
C_{2D} C_{2D} C_{4D} C_{4D}	120.0	N2A - C9A - C3A	115.19 (10)
$C_{2}B$ $C_{1}B$ $U_{1}B$	119.9 (2)	$N_{2}A - C_{9}A - C_{10}A$	100.00(13)
	120.1	C_{A} C_{A} C_{A} C_{A}	112.17(13)
COB-CIB-HIB	120.1	$N_{2}A - C_{9}A - C_{8}A$	111.52(10) 109.94(17)
	122.99 (19)	$C_{10A} = C_{0A} = C_{0A}$	108.84(17)
	110.03 (19)	C10A - C9A - C8A	110.28(17)
	121.0(2)	O_{2A} C_{10A} N_{1A}	126.28 (19)
COB-COB-C4B	117.72 (19)	U_{2A} U_{10A} U_{9A}	126.74 (19)
Сов—Сэв—Сяв	121.36(18)	NIA-CIUA-C9A	106.96 (16)

C4B—C5B—C9B	120.86 (19)	C10A—N1A—C11A	111.53 (16)
O2B—C10B—N1B	125.3 (2)	C10A—N1A—C12A	125.46 (17)
O2B—C10B—C9B	126.8 (2)	C11A—N1A—C12A	123.00 (17)
N1B—C10B—C9B	107.88 (17)	N1A—C12A—C13A	112.6 (2)
N1B—C12B—C13B	111.7 (2)	N1A—C12A—H12C	109.1
N1B-C12B-H12A	109.3	C13A—C12A—H12C	109.1
C13B—C12B—H12A	109.3	N1A—C12A—H12D	109.1
N1B-C12B-H12B	109.3	C13A—C12A—H12D	109.1
C13B—C12B—H12B	109.3	H12C—C12A—H12D	107.8
H12A—C12B—H12B	107.9	C12A—C13A—H13D	109.5
C12B—C13B—H13A	109.5	C12A—C13A—H13E	109.5
C12B—C13B—H13B	109.5	H13D—C13A—H13E	109.5
H13A—C13B—H13B	109.5	C12A—C13A—H13F	109.5
C12B—C13B—H13C	109.5	H13D—C13A—H13F	109.5
H13A—C13B—H13C	109.5	H13E—C13A—H13F	109.5
H13B—C13B—H13C	109.5	O3A—C11A—N2A	129.04 (18)
O3B-C11B-N2B	128.9 (2)	O3A—C11A—N1A	123.54 (18)
O3B-C11B-N1B	123.8(2)	N2A—C11A—N1A	107 40 (16)
N2B-C11B-N1B	107.23 (17)	C7A - C8A - C9A	110.44 (17)
C11B - N2B - C9B	113.24 (17)	C7A—C8A—H8A1	109.6
C11B - N2B - H2B1	123.4	C9A—C8A—H8A1	109.6
C9B—N2B—H2B1	123.4	C7A—C8A—H8A2	109.6
O1B—C7B—C8B	111.1 (2)	C9A—C8A—H8A2	109.6
O1B-C7B-H7B1	109.4	H8A1—C8A—H8A2	108.1
C8B—C7B—H7B1	109.4	01A—C7A—C8A	112.2 (2)
01B—C7B—H7B2	109.4	O1A—C7A—H7A1	109.2
C8B—C7B—H7B2	109.4	C8A—C7A—H7A1	109.2
H7B1—C7B—H7B2	108.0	O1A—C7A—H7A2	109.2
C7B—C8B—C9B	110.7 (2)	C8A—C7A—H7A2	109.2
C7B—C8B—H8B1	109.5	H7A1—C7A—H7A2	107.9
C9B—C8B—H8B1	109.5	C6A—O1A—C7A	118.11 (17)
C7B—C8B—H8B2	109.5	C3A—C4A—C5A	120.9 (2)
C9B—C8B—H8B2	109.5	C3A—C4A—H4A	119.6
H8B1—C8B—H8B2	108.1	С5А—С4А—Н4А	119.6
C4B—C3B—C2B	119.8 (2)	C2A—C3A—C4A	119.7 (3)
C4B—C3B—H3B	120.1	С2А—С3А—НЗА	120.2
C2B—C3B—H3B	120.1	С4А—С3А—Н3А	120.2
C3B—C2B—C1B—C6B	-0.5 (3)	C3A—C2A—C1A—C6A	-0.2 (4)
C7B—O1B—C6B—C5B	-18.6 (3)	C2A—C1A—C6A—O1A	178.9 (2)
C7B—O1B—C6B—C1B	162.2 (2)	C2A—C1A—C6A—C5A	-0.2 (4)
C2B-C1B-C6B-01B	-178.9 (2)	O1A—C6A—C5A—C4A	-178.5 (2)
C2B—C1B—C6B—C5B	1.9 (3)	C1A—C6A—C5A—C4A	0.5 (3)
O1B—C6B—C5B—C4B	178.82 (19)	O1A—C6A—C5A—C9A	0.3 (3)
C1B—C6B—C5B—C4B	-2.1 (3)	C1A—C6A—C5A—C9A	179.3 (2)
O1B—C6B—C5B—C9B	-4.1 (3)	C11A—N2A—C9A—C5A	-129.41 (18)
C1B—C6B—C5B—C9B	175.04 (18)	C11A—N2A—C9A—C10A	-9.5 (2)
N2B—C9B—C5B—C6B	122.3 (2)	C11A—N2A—C9A—C8A	107.5 (2)
	× /		

C8B—C9B—C5B—C6B	-7.3 (3)	C6A—C5A—C9A—N2A	-146.34 (19)
C10B—C9B—C5B—C6B	-126.2 (2)	C4A—C5A—C9A—N2A	32.5 (3)
N2B-C9B-C5B-C4B	-60.6 (3)	C6A—C5A—C9A—C10A	100.6 (2)
C8B—C9B—C5B—C4B	169.7 (2)	C4A—C5A—C9A—C10A	-80.6 (2)
C10B—C9B—C5B—C4B	50.9 (2)	C6A—C5A—C9A—C8A	-21.7 (2)
C11B—N1B—C10B—O2B	-179.7 (2)	C4A—C5A—C9A—C8A	157.10 (19)
C12B—N1B—C10B—O2B	-4.0 (4)	N2A—C9A—C10A—O2A	-173.9 (2)
C11B—N1B—C10B—C9B	0.5 (2)	C5A—C9A—C10A—O2A	-53.3 (3)
C12B—N1B—C10B—C9B	176.2 (2)	C8A—C9A—C10A—O2A	68.2 (3)
N2B-C9B-C10B-O2B	-179.2 (3)	N2A—C9A—C10A—N1A	7.7 (2)
C5B-C9B-C10B-O2B	60.8 (3)	C5A—C9A—C10A—N1A	128.30 (18)
C8B—C9B—C10B—O2B	-59.4 (3)	C8A—C9A—C10A—N1A	-110.20 (19)
N2B-C9B-C10B-N1B	0.6 (2)	O2A—C10A—N1A—C11A	177.8 (2)
C5B-C9B-C10B-N1B	-119.41 (18)	C9A—C10A—N1A—C11A	-3.8 (2)
C8B—C9B—C10B—N1B	120.4 (2)	O2A—C10A—N1A—C12A	-3.3 (4)
C10B—N1B—C12B—C13B	-82.7 (3)	C9A—C10A—N1A—C12A	175.1 (2)
C11B—N1B—C12B—C13B	92.5 (3)	C10A—N1A—C12A—C13A	106.5 (3)
C10B—N1B—C11B—O3B	-179.9 (2)	C11A—N1A—C12A—C13A	-74.7 (3)
C12B—N1B—C11B—O3B	4.3 (4)	C9A—N2A—C11A—O3A	-173.4 (2)
C10B—N1B—C11B—N2B	-1.4 (3)	C9A—N2A—C11A—N1A	7.8 (2)
C12B—N1B—C11B—N2B	-177.2 (2)	C10A—N1A—C11A—O3A	178.9 (2)
O3B—C11B—N2B—C9B	-179.7 (2)	C12A—N1A—C11A—O3A	-0.0 (3)
N1B—C11B—N2B—C9B	1.9 (3)	C10A—N1A—C11A—N2A	-2.2 (2)
C5B—C9B—N2B—C11B	116.2 (2)	C12A—N1A—C11A—N2A	178.9 (2)
C8B—C9B—N2B—C11B	-116.4 (2)	N2A—C9A—C8A—C7A	174.55 (19)
C10B—C9B—N2B—C11B	-1.5 (2)	C5A—C9A—C8A—C7A	49.0 (2)
C6B—O1B—C7B—C8B	52.1 (3)	C10A—C9A—C8A—C7A	-74.5 (2)
O1B—C7B—C8B—C9B	-63.2 (3)	C9A—C8A—C7A—O1A	-58.6 (3)
N2B—C9B—C8B—C7B	-90.4 (3)	C5A—C6A—O1A—C7A	-7.9 (3)
C5B—C9B—C8B—C7B	38.9 (3)	C1A—C6A—O1A—C7A	173.1 (2)
C10B—C9B—C8B—C7B	159.4 (2)	C8A—C7A—O1A—C6A	37.1 (3)
C1B—C2B—C3B—C4B	-0.7 (4)	C6A—C5A—C4A—C3A	-0.3 (3)
C2B—C3B—C4B—C5B	0.5 (4)	C9A—C5A—C4A—C3A	-179.2 (2)
C6B—C5B—C4B—C3B	0.9 (3)	C1A—C2A—C3A—C4A	0.3 (4)
C9B—C5B—C4B—C3B	-176.3 (2)	C5A—C4A—C3A—C2A	-0.1 (4)

Hydrogen-bond geometry (Å, °) Cg is the centroid of ring C1*A*–C6*A*.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
$N2A$ — $H2A$ ···O $3A^{i}$	0.86	2.06	2.857 (3)	155	
$N2B$ — $H2B1$ ···O $3B^{ii}$	0.86	2.44	3.019 (3)	124	
$N2B$ — $H2B1$ ···O2 A^{iii}	0.86	2.55	3.290 (3)	145	
$C1A$ — $H1A$ ···O $3A^{iv}$	0.93	2.45	3.263 (4)	146	
$C2B$ — $H2B$ ···· $O2A^{v}$	0.93	2.58	3.501 (4)	173	
С7 <i>В</i> —Н7 <i>В</i> 2… <i>С</i> д ^{ііі}	0.93	2.99	3.680 (3)	129	

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z; (iii) x, y-1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z.