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Abstract. We address the behavior of the Dirac equation with the Killingbeck radial potential including
the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are
considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek
such a solution using the biconfluent Heun’s differential equation method. Further, we give some of our
results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply
using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very
similar with a slight difference in energy spacing between different states.

1 Introduction

The solution of the relativistic equation for massive ferm-
ions is still a very challenging problem even after it has
been derived more than 80 years ago and utilized. In fact,
this wave equation has been received a rapidly growing
importance in so many physical sciences. For example,
it is used to describe the behavior of nucleons in nuclei
when studying materials such as graphene [1,2], heavy-
ions spectroscopy and more recently in laser-matter in-
teraction (see ref. [3] and references therein), optical lat-
tices [4-6] and 2D and 3D topological insulators [7,8].

On the other hand, symmetry plays a fundamental
role in physics. The idea about spin and pseudo-spin
(p-spin) symmetries with the nuclear shell model has
been introduced five decades ago [9,10], and has been
extensively applied in explaining a number of phenom-
ena in nuclear physics and its related areas. Namely, cer-
tain aspects of deformed and exotic nuclei have been in-
vestigated by means of the concepts of spin and p-spin
symmetries [9,10].

In 1975, Bell and Ruegg [11] showed that p-spin sym-
metry is a relativistic symmetry of the Dirac Hamiltonian
that occurs when V(r) &~ —S(r) in magnitude of the re-
pulsive time-like vector potential V' (r) and an attractive
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scalar potential S(r) with opposite signs [12—14]. This case
is called the p-spin symmetry.

At the beginning, the p-spin symmetry was consid-
ered in the nonrelativistic framework [10]. However, in the
1990s, Blokhin et al. found a connection between p-spin
symmetry and relativistic mean-field theory [15-17]. In
1997, the relativistic feature of the symmetry was recog-
nized and revived by Ginocchio [12]. With this mention
of the relativistic feature of the p-spin symmetry, he also
showed that if the scalar potential is equal to the time-like
vector potential, S(r) ~ V(r), then the Dirac Hamiltonian
has also the so-called spin symmetry [18] where, this sym-
metry was applied to explain the suppression of spin-orbit
splitting in states of mesons (with a heavy and a light
quark) and antinucleons [18]. This symmetry also led to
understanding of magic numbers in nuclei [19]. Further,
the p-spin symmetry was introduced to explain the near
degeneracy of some single-particle levels near the Fermi
surface, exotic nuclei [20], and to establish an affective
nuclear shell-model scheme [21].

In fact, the p-spin doublets were suggested that based
on the small energy difference between pairs of nuclear
single-particle states, a quasi degeneracy of single nu-
cleon doublets, with nonrelativistic quantum numbers
(ne, b, j =0+4+1/2) and (n,. — 1, £+2, j = {+ 3/2),
where n,, £ and j are the single-nucleon radial, orbital
and total angular momentum quantum numbers, respec-
tively [9,10]. The total angular momentum j = { + 3 with



Page 2 of 8

l=(+1isa pseudo-angular momentum and s is p-spin
angular momentum [22-30].

These degenerative single-nucleon levels are considered
as a doublet structure with (7 = n — 1, 0 =10+ 1, j =
{4 1/2), where £ and 5 = 1/2 are pseudo-orbital an-
gular momentum and p-spin quantum numbers, respec-
tively. In this regard, the deformation, identical bands,
super-deformation and magnetic moment in the nuclear
structures have been successfully illustrated by using this
doublets structure [31-34].

One notable feature of these symmetries is the suppres-
sion of either the spin-orbit or the so-called p-spin-orbit
couplings that are shown in the second-order equations for
the upper/lower Dirac spinor components, respectively. In
other works, the nature of the spin and p-spin symme-
tries were considered in the framework of perturbation
theory [35] and the energy splittings of the p-spin dou-
blets can be investigated as a result of small perturba-
tion around the Hamiltonian with the potential [35] (see
refs. [36,37]).

Now, after the pioneering work of Ginocchio, the p-spin
and spin symmetries have been investigated by solving
the relativistic Dirac equation for a spin-1/2 particle by
means of different methods for exactly solvable potentials.
Alhaidari et al. [38] have showed in detail physical inter-
pretation on the 3D Dirac equation in the case of spin limit
V(r) — S(r) = 0 and p-spin limit V() + S(r) = 0. Meng
et al. [39] have investigated that the p-spin symmetry is
exact under the general condition d(S(r) + V (r))/dr =0,
where it can be approximately satisfied in exotic nuclei
with highly diffused potentials. Based on this limit, the p-
spin SU(2) algebra was established [40] and, with the same
origin, the spin symmetry in single anti-nucleon spectrum
was proposed and investigated [41,42]. In fact, the spin
and the p-spin symmetries are SU(2) symmetries of a
Dirac Hamiltonian with time-like vector and scalar poten-
tials realized when the difference between the potentials
or their sum is a constant [11]. In addition, for the two
symmetries, the Dirac Hamiltonian is invariant under the
SU(2) algebra [11].

Therefore, if d > (r)/dr is equal to zero, where > (r) =
S(r) 4+ V(r) = const, we have the p-spin symmetry while
if dA(r)/dr is equal to zero, where A(r) = V(r) — S(r) =
const, we have the spin symmetry [39,41,43]. In fact, when
the potentials are spherical, the Dirac equation is said to
have the spin or p-spin symmetry corresponding to the
same or opposite sign.

For a further review on this subject, the reader can
refer to the recent works by Shen et al. [44], Alberto et
al. [45], Lisboa et al. [46], Marcos et al. [47] and other
works [48-52].

Also, in recent years, the exact analytical solutions of
the Dirac equation have been extensively obtained, by us-
ing various methods in the presence of the spin and p-spin
symmetries (see, for example, [53-63]). On the other hand,
some authors have studied both the non-relativistic and
relativistic bound states with some potential models such
as Cornell [64], harmonic oscillator [65], sum of harmonic
oscillator and Cornell [66], the superposition of pseudo-
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harmonic, linear and Columbic potential forms [67], the
Coulomb plus linear [68], the anharmonic oscillator [69],
the Hulthen [70], the Coulomb-like [71] and the Killing-
beck potentials [72] in the presence of the external mag-
netic and AB flux fields.

Recently, Neyazi et al. [73] have investigated the tri-
axial nuclei with the Killingbeck potential model.

In this work, we attempt to solve the Dirac equation
under the spin and p-spin symmetries with the Killing-
beck potential model [74] which is of great importance,
particularly, in particle physics. It has the general form:

c
V(r) =ar®+br — oy (1)
which is mainly used to study the splitting of the rela-
tivistic energy eigenvalues in the presence of the external
magnetic and AB flux fields.

The organization of the present paper is as follows.
In sect. 2, we solve the (2 + 1)-dimensional Dirac equa-
tion with potential model (1) in the presence of external
magnetic and AB flux fields using two different methods.
We study both the spin and pseudo-spin symmetries. The
Dirac bound state energy eigenvalues equation and the
corresponding wave functions are found in a closed form.
Finally we give some of our conclusions in sect. 3.

2 The solution of the Dirac wave equation

2.1 The spin symmetry

The Dirac equation for massive fermions interacting via
the scalar S(r) and the time-like vector V(r) potential
fields (in 7 = ¢ = 1 units) is [75,76]

(@ P+ B(S(r) + M) — (Bpm — V()] ¥(7) =0, (2)

where a and [ are the usual Dirac matrices, E,,,, denotes

the relativistic energy of the system, p = —iV denotes
the three-dimensional momentum operator. Assuming the
f()

wave function as ¥(7) = (g(f") ), where f(7) and g(7) are
the upper and lower spinor components of the Dirac wave
functions, respectively [77,78]. Substituting it into eq. (2),
we can obtain two coupled differential equations for the
upper and lower radial wave functions. Further, combining
the two equations, by applying the spin symmetry for a
particle moving in the presence a magnetic and AB flux
fields and performing a simple transformation p — p —
(e/c)A, we can obtain [65-69,72]:

[ (5— %A’)Q 4 2By + MV (r)

(=2, - MZ)]f(F) 0, (3)

where A is the vector potential which we take in the form:

—

A= (0,Br/2+Pap/27r,0) [66,68,72]. Now, in choosing
F(7) = fam(r)e"™¢ //r and substituting the potential (1)
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into eq. (3), we can get

d? frm () 9 5 emB e2BPap
= JamT) B2 M _
dr2 + nm + 2¢ 47c?
ePag)®_ 1|1
m 2mc 41 r2

1
+2(Epm + M)c— —

2(Epym + M)br
.

— [2(Eppm + M
[( + M)a + 12

B 2] 7"2} fm() =0, (4)

Further, by making the change of variable y = 5}3/47", we

can obtain
1 1
(m 4) 2

A2 frum (x) DS
dX2 8}3/2
xl _ 2(Bpm + M)b

X 5:]33/ *

2(Epm + M)c
1/4
€B

X — XQ}fnm(X) =0, (5)

where the following assignments: eg = 2a(Ey,, + M) +
w2/4, ¢ = (B2, — M?+ %), m' =m—edap/2me, have
been used and w. = eB/c is the cyclotron frequency.

It is obvious that eq. (5) has two singular points: the
first one is regular at the origin and the second one is ir-
regular at infinity. Therefore, we can write the solutions
of eq. (5) as expressions valid (authentic) in the neighbor-
hood of both singular points.

Now, with a suitable choice of our ansatz, we can ex-
press the upper radial component, f,,,(x) in the form

of fam(x) = x™ /2 exp[-x(x + V')/2]F(x), and hence
eq. (5), becomes

Xd2F(x) N [2 (m, L1 ) by 2)4 dF(x)

dx? 2 dy

VIR S PV LAY I A U
+ |c (m +2 b+ 8}3/2+4 2 m+2 1])x
xF(x) =0, (6)

where the following identifications: o’ = 2(Ey,,,+M)b/ 5?]’3/4
and ¢ = 2(Epm + M)c/e}f, were used.

The above differential equation resembles the so-called
biconfluent Heun’s (BCH) differential equation [75]

d? 1 d
d—gj+g[a+1—ﬁx—2g2]£
HEEE s mam | E0 @

with the well-known Heun’s wave function solution given
by U = HB(OL, 67 s 57 7<)
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In comparing eq. (6) with its counterpart eq. (7), we
can conclude that eq. (6) is simply the BCH differential
equation [79], whose solution is BCH function, Hp:

2(Epm +M)b ¢
53;3/4 ’ 81/2

F(r)=Hpg <2m’,
B

(Epm + M)?0* 4(Epp + M)c 14
3/2 ’ 1/4 e T
€B €B

and consequently the upper radial spinor component of
the Dirac wave function:

Fam(X) = X" exp [—x (X + W) /2]
B

2(Enm + M)b C

/
xHp <2m, 3/4 ,71/2
€p €

(B + M)2b2 4(Epm + M)e
3/2 ) 1/4 y =X | - (8)
€B €B

Likewise, the lower radial spinor component of the wave
function is gnm(x) = X" T32expl—x(x + 2(Epm +
M)b/<if")/2G(x), with

2(Enm + M)b - ¢
5‘;39/4 12

G(r) = Hp <2m' + 2,
B

(Enm + M)2b2 4(Enm + M)C 1/4
3/2 ’ 1/4 e T -
€p ¢p

(9)

Let us now follow the results given in eq. (6) by defining

the parameters P, ), R, and the function F representing
F as follows:

1 1\ v -
P=m+ =, Q=1—-(m+=)—, ifF=F
2 2)c
B < b/2 , 1 A

with the above definitions, eq. (6) can be simplified as

dF(x)
dx

d*F(x)
dyx?

+(Rx —Qc) F(x) = 0. (11)

In order to solve the above differential equation, the func-
tion F(x) is assumed to be in the Frobenius series form

as F(x) =Y, Cnx". So we can plug it into eq. (11) and

hence obtain the recurrence relation:

[Qc =V (n+1)]Chy1 — (R—2n)C,
(n+2)(n+2P+1) '

X + [2P — b'x — 2X°]

Cn+2 = (12)
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Table 1. The spin-symmetric energy states of the Dirac particle in the Killingbeck potential field.

Es (MeV)

(®=20tesla, M =5.0MeV, m=e=c=1)

B = 1.0tesla

B = 1.2tesla

B = 1.5tesla

5.273485251

5.323036087

5.397166864

5.294470611

5.340782661

5.411507210

5.314084649

5.357668430

5.425374208

5.272596822

5.322404523

5.396754568

5.293698069

5.340212048

5.411121852

5.313401395

5.357148110

5.425012512

5.271412478

5.321562555

5.396204891

5.292668162

5.339451317

5.410608083

5.312490493

5.356454415

5.424530285

5.423823650

5.482709813

5.573630596

5.533240322

5.606436282

5.719144859
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b a
0.001
0.005 0.003
0.005
ne1 0.001
0.007 0.003
0.005
0.001
0.009 0.003
0.005
n=2 0.009 0.005
=3 0.009 0.005
n=4 0.009 0.005

5.640843664

5.727788566

5.861330050

Assuming C_; = 0 and Cy = 1, then the first three coef-
ficients of the recurrence relation (12) can be obtained as
follows:

- Qd (Qd-1)¥ —R
Gi=9p> = 2(2Pjpl) ’
B 1 Q=2 [Qd, ,
O =5 {2(2P+1) [213(6’26 _b)_R}
Qc
- 2P(R—2)}. (13)

At this stage, we can obtain the analytical solution to
the radial part of Dirac equation. This can be accom-
plished by breaking the series (12) of the BCH function
into Heun’s polynomial of degree n. Imposing the fol-
lowing conditions on the two coefficients: C,,41 = 0 and
R=~v—a—2=2nwithn =1,2,3,... . So from the
condition R = 2n, it is possible to obtain a formal expres-
sion for the energy eigenvalues. Therefore, after adopting
the aforementioned limitation, we can simply obtain the
required energy eigenvalues. Also, the necessary condition
of the BCH series, eq. (7), becomes a polynomial of degree
n with v = 2n + a + 2, [80,81]

1 62451243 ePap
\/1—4<4—m2— 4m2c? + 2e +ant2

2 o 2 emB eQBéAB
_E"m M~ + 2c 2mc?

V2a(E + M) + 282
B (Epm + M)?b? 0
[20(E + M) + $5] \ [2a(E + M) + &5

or
e2B?
—24/2a(E+ M) + —
\/ o(B+M)+ 4c2
62 2 e
R
X 3 +mn+ 3
+E2 _M2+emB B BQBQSAB (Enm =+ M)2b2 _
nm 2¢ 271'62 2a(E+M)+ezC€2 )
(14)
where n = 1,2,3,... is the radial quantum number. For

the sake of completeness in this discussion and making
one is confident on the variety of results. It is found that
eq. (9) of ref. [67] is same as the present one in eq. (4),
therefore we can impose the same condition as that in
eq. (18) of ref. [67].

Alternatively, making the following substitutions:
m' — f3,( — —e* e = (p* = %), 2(Enm + M)b — 2pq
and s — n, can easily provide eq. (14). That is, the above
equation is correct in its present form.

In table 1, we have obtained the energies of the n =
1,2,3 and 4 states in the spin-symmetric case. To see the
effect of the potential parameters on these states, we have
fixed the value of the parameter b while have increased
the value of the parameter which could lead to an increase
in the energy states. Further, when we have increased b,
the energy levels are found to be slightly decreasing. The
energy shift between the different successive n > 1 states is
found evenly spaced. The increase in the strength of this
magnetic field would lead to a wider shift. The excited
energy states go up to a wider shift nearly from 0.11 MeV
to 0.14MeV when the strength of the magnetic field B
changes from 1.0T to 1.5T.

To show the effect of changing the Killingbeck model
parameters on the energy states, we have plotted the en-
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Fig. 1. A plot of the spin symmetric energy versus a for various
values of magnetic field B.
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Fig. 2. A plot of the spin symmetric energy versus b for various
values of B.

ergy versus the potential parameters a and b for various
values of the magnetic field strength B as shown in figs. 1
and 2, respectively.

2.2 The pseudo-spin symmetry
In this section, we begin by studying the pseudo-spin sym-

metric case. So we need to solve the following Dirac equa-
tion:

[(q_z’z)aQ(Enm—M)V(?‘)—(Eim—MZ) g(7) = 0.
(15)
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Fig. 3. A plot of the pseudo-spin symmetric energy versus a
for various values of magnetic field B.
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Fig. 4. A plot of the pseudo-spin symmetric energy versus b
for various values of B.

So to avoid any repetition in our solution to eq. (14) and
to obtain a similar solution as before in subsect. 2.1, the
pseudo-spin symmetry can be found by making the fol-
lowing transformations f(r) — ¢(r), Enm — —En, and
V(r) — =V(r) into eq. (14) and obtain

2n+2+2m — ¢P4p + B — M + eT;CB — 825533
e \/2a(Enm M)+ eicB;
B (Epm — M)?b? —0
RlEr — M)+ B (20l = M)+ 5]
(16)
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Table 2. The pseudo-spin symmetric energy states of a Dirac particle in Killingbeck potential field.
Eps (MeV)

(P =2.0tesla, M =5.0MeV, m=e=c=1)
b a B =1.0tesla B = 1.2tesla B = 1.5tesla
0.001 5.263670129 5.314776171 5.390526897
0.005 0.003 5.264248822 5.315346229 5.391084622
0.005 5.264828765 5.315917291 5.391643106
ne1 0.001 5.263669496 5.314775550 5.390526294
0.007 0.003 5.264248187 5.315345607 5.391084018
0.005 5.264828129 5.315916668 5.391642502
0.001 5.263668651 5.314774722 5.390525490
0.009 0.003 5.264247341 5.315344778 5.391083213
0.005 5.264827281 5.315915837 5.391641695
n=2 0.009 0.005 5.360133315 5.428762792 5.530111950
n=3 0.009 0.005 5.454107542 5.539632933 5.665504273
n=4 0.009 0.005 5.546810297 5.648634249 5.798024647

and hence the wave function for the pseudo-spin symmetry
is taken as

’ 2 Enm - M
gnm(X) = X" /% exp [X (X + (3/4)> /2]
€B

2(Epm — M)b ¢
XGB <2m/, 37/4 y 17/2
€B €B

+ 3/2 ’ 3/4

2(Epm — M)Qb2 2(Epm — M)
y =X | -
€p €p

(17)

In table 2, we have also obtained the energy states of n =
1,2,3 and 4, in the pseudo-spin symmetric case, for various
values of the potential parameters. We fixed the value of
the parameter b while changed the value of the parameter
a, it is obvious that the energy increases by increasing
a. Also increasing b leads to slightly decreasing energy.
This behavior is very similar to spin symmetric case. So
by applying a magnetic field this leads to an increasing in
the excited states shift with the increasing B. It is noted
that the shift, under the effect of B, is slightly smaller
than the shift in the spin symmetric case.

For example, the excited energy states go up to a shift
nearly from 0.09 MeV to 0.13 MeV when the strength of
the magnetic field B changes from 1.0T to 1.5T.

We have also plotted the energy versus the potential
parameters a and b for various values of the magnetic field
strength B as shown in figs. 3 and 4, respectively. The
pseudo-spin symmetry is seen a very similar to that in
spin symmetry, figs. 1 and 2.

In fig. 5, we plot the ground state energy wversus
the magnetic field B for three different values of the
Aharonov-Bohm flux field. It is obvious that the energy
increases with the increasing magnetic field in the spin
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Fig. 5. A plot of the spin symmetric energy versus magnetic
field B for three values of the AB flux field.

symmetric case. In fig. 6, we also plot the ground state
energy versus the magnetic field B for three different val-
ues of the Aharonov-Bohm flux field. It is obvious that
the energy increases linearly with the increasing magnetic
field in the pseudo-spin symmetric case.

In fig. 7. we plot the spin symmetric energy versus the
magnetic field B for three different energy states. The en-
ergy increases with increasing magnetic field for all states.
Further, in fig. 8, we also plot the pseudo-spin symmet-
ric energy versus the magnetic field B for three different
energy states. The energy increases linearly with the in-
creasing of the magnetic field for all states.
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Fig. 6. A plot of the pseudo-spin symmetric energy versus
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Fig. 7. A plot of the spin symmetric energy F versus magnetic
field B for the lowest three different states.

3 Discussions and results

In this work, we have obtained exact analytical solutions
of the Dirac equation for the Killingbeck potential in
the presence of the external magnetic and Aharonov-
Bohm (AB) flux fields under the spin and pseudo-spin
symmetries.

The only role of a magnetic field consists in reducing
the angular frequency and the entire dynamics of the sys-
tem remains unchanged.

We have found that the energy is increasing with the
increasing of magnetic field strength. The energy also
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Fig. 8. A plot of the pseudo-spin symmetric energy F versus
magnetic field B for the lowest three states.

changes with increasing the magnetic flux density. The
spin symmetric solution is very similar to the pseudo-spin
symmetric one with a slight difference.

Let us comment on our results in figs. 1 and 2 that
when taking fixed values of a and b, the energy increases
with the increasing magnetic field strength.

Further, in figs. 3 and 4, notice that for fixed values of a
and b, the energy increases when the magnetic field grows.

Also, in figs. 5 and 6, notice that for a fixed value of
the magnetic field, the energy increases when the magnetic
flux density grows. Finally, in figs. 7 and 8, notice that for
a fixed value of the magnetic field, the energy increases
when the quantum number n grows.

The authors would like to thank the kind referee(s) for positive
and invaluable suggestions which have greatly improved the
manuscript.
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