DATCloud: A Model-Driven Framework for
Multi-Layered Data-Intensive Architectures

Moamin Abughazala*, Henry Muccini*

* DISIM Department, University of L’ Aquila, L’ Aquila, Italy
{moamin.abughazalal, henry.muccini } @univagq.it

t Department of Information Technology, An Najah N. University, Nablus, Palestine
m.abughazaleh@najah.edu

Abstract—The complexity of multi-layered, data-intensive sys-
tems demands frameworks that ensure flexibility, scalability,
and efficiency. DATCloud is a model-driven framework de-
signed to facilitate the modeling, validation, and refinement of
multi-layered architectures, addressing scalability, modularity,
and real-world requirements. By adhering to ISO/IEC/IEEE
42010 standards, DATCloud leverages structural and behavioral
meta-models and graphical domain-specific languages (DSLs)
to enhance reusability and stakeholder communication. Initial
validation through the VASARI system at the Uffizi Gallery
demonstrates a 40% reduction in modeling time and a 32%
improvement in flexibility compared to manual methods. While
effective, DATCloud is a work in progress, with plans to integrate
advanced code generation, simulation tools, and domain-specific
extensions to further enhance its capabilities for applications in
healthcare, smart cities, and other data-intensive domains.

Index Terms—Modeling Data Architecture, multi-layered ar-
chitectures, Data-Intensive applications

I. INTRODUCTION

The increasing complexity of data-intensive systems, driven
by the rapid expansion of Internet of Things (IoT) devices,
has introduced significant challenges for system modeling.
Modern architectures must address scalability, modularity,
and data management across multi-layered cloud, fog, and
edge systems [!]. However, existing frameworks often lack
robust modeling capabilities, resulting in inefficiencies when
designing, adapting, and managing these architectures [2].

To address these challenges, this paper introduces DAT-
Cloud a model-driven framework designed to simplify and
enhance the modeling of multi-layered, data-intensive systems.
Unlike traditional methods DATCloud models and combines
data systems across cloud, fog, and edge layers. DATCloud
uses structural and behavioral meta-models to represent the
logical architecture of systems, including components, data
flows, and workflows. These meta-models provide architects
with the tools needed to define, validate, and refine system
designs efficiently. The framework further incorporates graph-
ical domain-specific languages (DSLs), offering an intuitive
interface for creating models that ensure consistency and
compliance with architectural standards such as ISO/IEC/IEEE
42010 [3].

A key focus of DATCloud is improving the efficiency
and flexibility of the modeling process. By supporting tem-
plates,and modular design, the framework reduces the effort
required for iterative development and simplifies communica-
tion between stakeholders. These capabilities enable architects
to handle complex architectures while minimizing manual
overhead.

Research, such as Monitor-IoT [4], SimulatloT [5], Silva
et al. [6], and CHESSIoT [7], has highlighted the potential
of multilayer monitoring architectures for IoT systems. These
studies cover software, hardware, physical, and deployment
aspects, but reveal a notable gap in the Data View.

The rest of this paper is structured as follows: Section II re-
views related work, highlighting existing frameworks and their
limitations in addressing the challenges of modeling multi-
layered, data-intensive systems. Section III describes the de-
sign of DATCloud, detailing its structural and behavioral meta-
models, core functionalities, and adherence to ISO/IEC/IEEE
42010 standards. Section IV presents the case study and
discussion of initial results for DATCloud, focusing on metrics
for modeling time and flexibility. It highlights stakeholder
insights and demonstrates DATCloud’s practical effectiveness
in managing visitor flow and architectural flexibility through
its application in the VASARI system at the Uffizi Gallery.
Finally, Section V outlines future directions for enhancing the
framework, including advanced code generation and domain-
specific extensions, and concludes with a summary of its
contributions.

II. RELATED WORK

The rapid growth of IoT systems and data-intensive appli-
cations has prompted the development of various frameworks
and methodologies for modeling multi-layered architectures.
While significant progress has been made, some gaps still
exist, particularly in the data view and in integrating data-
intensive applications across the cloud, fog, and edge
layers. This section reviews the key contributions in these
areas and highlights the gaps that DATCloud aims to address.



A. Modeling IoT Multi-Layer Architectures

Efficient architectures are essential for IoT systems to
process distributed data across edge, fog, and cloud layers.
Various frameworks have been proposed to model and manage
these complex systems effectively.

o Bauer et al. [2] introduced an IoT Reference Architecture
emphasizing the roles of cloud, fog, and edge layers.
While this model outlines task allocation, it lacks a
concrete framework for modeling workflows and data
interactions between these layers.

o Taivalsaari and Mikkonen [8] focus on IoT systems’
lifecycle, emphasizing the interplay between edge de-
vices and the cloud. However, their approach primarily
addresses operational challenges rather than architectural
modeling.

o Thirwe et al. [7] proposed CHESSIoT, a model-driven en-
gineering (MDE) framework for IoT system design. This
framework leverages domain-specific languages (DSLs)
to model and verify [oT architectures. While effective for
IoT-specific use cases, CHESSIoT does not generalize to
multi-layered systems involving complex data workflows.

While current frameworks recognize the hierarchical struc-
ture of IoT systems, they mainly concentrate on system
behavior or task allocation. They do not adequately address the
data view, which creates a gap in how data is modeled, stored,
and processed across multi-layered architectures. Additionally,
most frameworks are specific to certain domains and lack the
flexibility needed for wider applications.

B. Modeling Data-Intensive Applications

Data-intensive applications are defined by their need to
manage, process, and analyze large volumes of data across
distributed systems. Effective modeling of such systems re-
quires frameworks that prioritize data workflows, scalability,
and adaptability.

o Kleppmann [9] explores the challenges of building scal-
able, distributed systems for handling data pipelines and
real-time analytics. While this work provides a thorough
understanding of data-intensive systems, it focuses on
implementation rather than architectural modeling.

o Abughazala et al. [10] [11] [12] proposed a Framework,
one of the few works explicitly addressing modeling data-
intensive workflows. The Framework introduces meta-
models to describe how data flows between components.
Its focus on industrial data workflows limits its relevance
to general multi-layered architectures, including cloud,
fog, and edge systems.

e Raj [13] introduced a conceptual model for designing
a data pipeline consisting of two primary components:
nodes and connectors. The nodes serve as the core
abstract data units, while the connectors facilitate data
transmission and communication between these nodes.

o Borelli [14] proposed a classification framework for
key software components and their interrelationships to
model software architectures tailored for specific IoT

applications. These components are presented as abstract
representations.

o Erraissi [15], [16] developed a meta-model encompassing
data sources, ingestion layers, and a Big Data visualiza-
tion layer to provide a structured approach to managing
and visualizing Big Data workflows.

Current frameworks for data-intensive applications lack
a unified approach to modeling data workflows across
cloud, fog, and edge layers. Instead of providing holistic
integration, they often focus on isolated aspects. This gap
highlights the need for a scalable and modular framework,
such as DATCloud, to effectively tackle these complexities
and ensure practical applicability in real-world scenarios.

III. FRAMEWORK DESIGN

This section introduces DATCloud’s framework design,
focusing on two key components: the structural meta-model,
which defines the architecture of multi-layered systems, and
the behavioral meta-model, which captures workflows and
interactions. Together with graphical DSLs, these meta-models
enable scalable, modular, and standards-compliant modeling
for data-intensive systems.

A. Structural Meta-Model

Using the structural meta-model, users can establish ar-
chitecture across cloud, fog, and edge layers, model nodes
and connections, choose data storage types like NoSQL or
NewSQL, and select communication protocols such as MQTT
or REST. They can also illustrate data formats and data
flow. Figure 1 illustrates the structural concepts of the Data
Architecture Modeling Language (DAML) meta-model, show-
casing the primary components and their interrelations within
data-intensive architectures. The DAML structural meta-model
defines the physical and logical structure of data systems,
emphasizing their nodes, formats, storage, and connections.
The key elements are:

e Data Architecture: Represents the overarching framework
that integrates multiple DataNodes and their interactions,
encapsulating the architecture of the data system.

e DataNode: The central element of the model, representing
a computational or storage unit responsible for handling
data operations [17]. Attributes include:

— NodeName: The identifier of the DataNode.

— Description: A description of the DataNode’s role.

— Type: Specifies the kind of node, such as Server,
Gateway, or Device.

o ProcessingType: Categorizes the nature of data handling
within a DataNode, such as Batch processing (Processes
data in large, pre-defined batches), Real-Time processing
(Processes data continuously as it streams).

e Data Location: Defines the physical or virtual storage
location of the data, which could be Cloud, Fog, or Edge
systems.
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Fig. 1. Meta-model: structural concepts

e Data Storage: Describes the storage solutions utilized in

the architecture, classified as:

— NoSQL: Includes databases such as Graph, Column,
Document, and Key-Value stores.

— NewSQL: Represents scalable, modern relational
databases that support real-time, historical, or stream

data.

— File System: Includes distributed and scalable stor-

and events.

o Incoming/Outgoing Connections: Define the flow direc-

tion of data within the architecture, crucial for under-

standing dependencies

and workflows.

This structural meta-model provides a clear and detailed rep-
resentation of the components, storage methods, data formats,

and interactions within a data-intensive system, forming the

age types like HDFS, GFS, Blobseer, and GPFS.

e Data Formats: Specifies the types of data handled by the

DataNode, catego

rized into:

B. Behavioral Meta-model

basis for cloud data architecture modeling.

Structured: Relational databases, CSV, Excel, RDF, EDI.

DATCloud allows end-users to define system component

Semi-Structured: XML, Email, JSON, YAML, AVRO,
and Protobuf. Unstructured: GPS data, multimedia files,

logs, office files, and plain text.

e DataPort: Represents the interfaces (input/output ports)

used for data exchange between nodes:

InDataPort: For receiving data. OutDataPort: For sending

processed data.

behavior using a graphical DSL. The behavioral meta-model
supports workflows for: Data Ingestion, Data Processing,
Data Output. Figure 2 depicts the Behavioral Meta-model
of the Cloud Data Architecture Modeling Language (Cloud-
DAML), focusing on the internal activities and workflows
within DataNodes. This meta-model outlines how data is
processed, analyzed, and consumed, detailing the roles of

e Connection: Describes the links between DataPorts, en-

abling data transfer within the system. These are catego-
rized by direction (Incoming and Outgoing) and protocol
(e.g., HTTPS, MQTT, REST).

e NodeBehavior: Specifies the functional operations per-
formed by a DataNode, including its responses to actions

actions, events, and interactions. The key components are:

e NodeBehavior: Represents the internal behavior of a

DataNode, encapsulating the logic, rules, and sequences
governing data handling.
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Fig. 2. Meta-model: behavioral concepts

o FElements: These include actions and events that define
the step-by-step data processing tasks and their triggers.
e DataPorts:

InDataPort: Serves as an entry point for data into a
node.
OutDataPort: Functions as an exit point for processed
data.

e Actions: Core behavioral elements representing atomic
tasks executed within a node. Actions can be triggered by
events or due to previous steps in the workflow. Examples
include:

Data Generation: Creation or sourcing of new data.
Data Ingestion: Data transfer to a staging area for
processing.

Data Processing: Transformations and computations
(e.g., filtering, aggregation, analysis).

Storing Data: Saving processed data to databases or
data lakes.

Analyzing Data: Performing in-depth analysis to
generate insights.

Consuming Data: Utilizing processed data for visu-
alization, reporting, or APIs.

Verifying Data: Ensuring data quality by checking
completeness, accuracy, and consistency.

Secure Data: Applying security measures such as
ACLs (Access Control List) and encryption to pro-
tect data during processing and transfer.

o Events:

Triggered by external stimuli or preceding actions within
the system. Example: ReceiveData: Handles incoming
data via an InDataPort, initiating the processing workflow.

e Connections: Links: Define logical pathways and de-

pendencies between actions and events, specifying the
sequence of operations and data flow.

This behavioral meta-model complements the structural
model by detailing the internal workflows and interactions
of DataNodes, providing a comprehensive framework for
modeling data lifecycle within cloud Data Architecture.

C. Adherence to ISO/IEC/IEEE 42010 Standards

In accordance with the ISO/IEC/IEEE 42010 standard [3],
DATCloud offers multiple architectural views and system com-
ponents are effectively described by their workflows through
structural and behavioral models. Their structural and behav-
ioral meta-models are used to guarantee the clear represen-
tations of both the logical and physical architectures and are
consistent and complete. To improve stakeholder communi-
cation, DATCloud has adopted the use of graphical domain
specific languages (DSLs) that generate easily understandable
visual models to support the interface between technical and
non-technical stakeholders. It also has automated validation
to ensure that models are coherent, exhaustive and that they
meet stakeholder’s needs. Its modular and scalable meta-
models enable it to be adaptable for iterative development and
changing needs.



D. How To Use DATCloud

DATCloud defines the architecture using the structural
meta-model, specifying nodes, data flows, storage types, and
communication protocols. The behavioral meta-model cap-
tures workflows within and between nodes, such as data
ingestion and processing. Pre-defined templates and reusable
components streamline the process, while automated tools
validate the model for consistency and resolve dependencies.
Iterative refinements ensure alignment with system require-
ments. DATCloud supports scalability, enabling quick updates
to workflows or architecture, and minimizes manual effort
through its intuitive interface and automation.

IV. DISCUSSION OF INITIAL RESULTS

This section examines DATCloud’s application to the
VASARI system at the Uffizi Gallery, validating its effective-
ness in real-world scenarios. Metrics such as modeling time
and flexibility were evaluated using participant logs and feed-
back. The results highlight DATCloud’s ability to streamline
workflows, adapt to changes, and address challenges in multi-
layered, data-intensive architectures.

A. CASE STUDY

The VASARI system has been deployed at the Uffizi Gallery
to control the flow of visitors and has been used to validate
the effectiveness of DATCloud. This case study is a model of
architecture with IoT sensors at the edge layer, fog nodes for
processing, and cloud for analytics. The structural meta-model
of the DATCloud modeled the relations of these components,
and the behavioral meta-model defined the workflows for
visitor tracking and queue management. Figure 3 illustrates
how DATCloud models the structure of the Uffizi Gallery. It
shows the IoT sensors, the data processing at the fog layer,
and the centralized cloud analytics platform. The diagram
highlights the flow of visitor data from the sensors to ana-
lytics, showcasing DATCloud’s flexibility and modularity in
facilitating these processes.

B. Initial Results

To assess the performance of DATCloud in the VASARI
system, two key metrics were evaluated: Modeling Time
and Flexibility in Architectural Design. Table I demonstrates
the significant reduction in modeling time achieved using
DATCloud, while Table II outlines the framework’s ability to
improve flexibility when adapting to new requirements. For
example, the use of pre-defined templates reduced workflow
definition time by 50%, while modular design allowed for
faster addition of architectural layers.

C. Metrics and Methodology

The results in Tables I and II were derived from structured
time logs maintained by the participants during the case study.
Participants included system architects, data analysts, and
museum staff responsible for managing the VASARI system.
Each participant logged their time spent on specific modeling

tasks, such as defining workflows, validating the system, and
refining models, using both manual methods and DATCloud.
The average values for modeling time (7iase and Tpar) and
flexibility (Epase and Epar) were calculated to provide a
comprehensive evaluation of the framework’s impact.

e Modeling Time (Table I): The total time required for
workflow definition, system validation, and model refine-
ment was significantly reduced when using DATCloud,
with an overall time savings of 40%.

. . Thase — Ipar
Time Savings (%) = —2—~PAT » 100
base
TABLE I
TIME SAVINGS ACHIEVED USING DATCLOUD
Task Thase (hrs) Tpar (hrs) TSaving (%)
Workflow Definition 40 20 50%
System Validation 30 20 33%
Model Refinement 30 20 33%
Total 100 60 40%

« Flexibility (Table II): Improvements in flexibility were
assessed based on the time and effort needed to modify
workflows, add architectural layers (e.g., fog and edge
layers), and reuse templates. DATCloud improved overall
adaptability by 32%, with the most notable gains ob-
served in adding fog and edge layers.

Flexibility Improvement (%) =

TABLE 11
FLEXIBILITY IMPROVEMENT ACHIEVED USING DATCLOUD

Task Epase (hrs) Epar (hrs) Timprovement (%)
Add Fog Layer 15 8 47%

Add Edge Layer 20 12 40%
Modify Workflow 12 7 42%
Reuse Templates Not Applicable 5 Significant
Total 47 32 32%

D. Stakeholder Feedback

Stakeholders provided valuable feedback during semi-
structured interviews and observational studies conducted as
part of the VASARI case study. Training sessions and hands-
on workshops ensured that all participants were familiar with
DATCloud’s features. Stakeholders noted that the framework’s
intuitive design, pre-defined templates, and automated tools
significantly streamlined the modeling process. They also
highlighted the framework’s ability to adapt to evolving re-
quirements as a critical advantage. Key suggestions included
enhancing visualization tools for complex workflows, expand-
ing the library of domain-specific templates, and improving
onboarding materials. In response, DATCloud introduced a
more detailed template library, a refined graphical interface
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Fig. 3. A DATCloud Application for Uffizi Gallery

with collapsible nodes, and interactive training modules to
support new users.

V. CONCLUSION AND FUTURE WORK

DATCloud is a model-driven framework that simplifies
multi-layered, data-intensive architecture modeling, achieving
a 40% reduction in modeling time and 32% flexibility im-
provement in the VASARI system. It leverages structural and
behavioral meta-models, adhering to ISO/IEC/IEEE 42010
standards to streamline design and enhance stakeholder com-
munication. Future work includes advanced code generation,
simulation tools, and domain-specific applications to enhance
its scalability and versatility, making it ideal for real-world
implementations in areas like healthcare and smart cities.
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