Sensorless control of five-phase PMSM drives using multi-dimension space vector modulation

Kamel Saleh
Department of Electrical Engineering
An-Najah National University
Nablus, West Bank
Kamel.saleh@najah.edu

Mark Sumner
Department of Electrical Engineering
Nottingham University
Nottingham, UK
Mark.sumner@nottingham.ac.uk

Abstract— This paper introduces a new method to track the saturation saliency for position measurement of a five-phase PMSM motor fed by a five-phase inverter through measuring the dynamic current response of the motor line currents due to the IGBT switching actions. The new method uses only the fundamental PWM waveform obtained using the multi-phase space vector pulse width modulation (i.e there is no modification to the operation of the five-phase inverter) similar to the fundamental PWM method proposed for a three-leg inverter. Simulation results are provided to verify the effectiveness of the proposed strategy for saliency tracking of a five-phase PMSM motor driven by five-phase inverter over a wide speed ranges under different load conditions.

Keywords—component; Sensorless; five-phase motor; multi-dimension SVPWM.

I. INTRODUCTION

The interest in multi-phase motor drives has increased in recent years as they offer several advantages when compared to three-phase machines such as[1, 2]:

1) Improved reliability and increased fault tolerance;
2) Greater efficiency;
3) Higher torque density and reduced torque pulsations;

Therefore, multi-phase motor drives are extensively considered for applications related to vehicles, aerospace application (more electric craft), ship propulsion and high power applications.

As multi-phase motor drives are multi-dimensional systems and since most multi-phase motors are designed to have a non-sinusoidal back EMF, therefore conventional PWM which is implemented only in two-dimensional d-q subspace and aims to realize a sinusoidal phase voltage is no longer suitable. Instead multi-phase PWM techniques are of key important and have been the subject much research. SVPWM strategy is presented based on the concept of orthogonal multi-dimensional vector space in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], which can synthesize voltage vectors both in d-q subspace and in other subspaces to satisfy motor control requirements.

Tracking the saliency of ac motors fed by two level three-leg inverters has been widely researched. At low and zero speed, some form of additional excitation has been proposed, such as the injection of a high frequency (HF) voltage or current [13, 14, 15] or the injection of test pulses [16, 17, 18].

Many control techniques has been adopted to control the multi-phase motor drives in sensored mode such as Fuzzy Logic Control [19], predictive current control [20]. In the last couple of years, few researches have been directed towards the sensorless control of a multi-phase electrical drives. These researches focus on the model based sensorless control, direct torque control and high frequency injections[21, 22, 23, 24, 25].

This paper proposes a new method to track saliency in a five phase inverter PMSM drive for example to track the saturation saliency in five PM motors and rotor slotting saliency in five phase induction motors without introducing any modification to the operation of the drive system. It simply measures the transient response of the phases currents when active and switching zero vectors are applied.

II. RESEARCH METHOD

A. Five-phase converter drive topology

Figure 1 shows the proposed five-phase converter drive topology [23].

![Figure 1. Five phase converter drive topology.](image)

B. Multi-phase Space Vector Pulse Width Modulation

Concept of Orthogonal Vector Space

The difference between the space vector modulation of the five-phase motors and those proposed for a three-phase motors is that the kth order harmonics (k = 5xm ± 2, m = 1,3,5,..) of the machine's variables such as phase voltage, phase current which do not produce any rotating MMF and are non electromechanical energy conversion related will freely flow

978-1-4673-8888-7/16/$31.00 ©2016 IEEE
through the machine and their amplitude will be restricted by the stator leakage impedance only [3-12 ,21-25]. Hence, generation of certain low-order voltage harmonics (3rd harmonic) in the VSI output can lead to large 3rd harmonic in stator current. It is therefore important that the multi-phase VSI output is kept as close as possible to sinusoidal. To do so the reference voltage should be mapped into two orthogonal planes. The first one is the d1-q1 plane that is rotating at synchronous speed and has fundamental components of the reference voltage. The second is the d3-q3 plane that is rotating at 3 times the synchronous speed. The mapping of the d1-q1 plane and d3-q3 plane into two orthogonal stationary frames α1-β1 and α3-β3 is shown in Fig 2.

Figure 3 shows the reference voltage of the fundamental component (Vref_α1-β1) exists in the first quadrant in the α1-β1 plane and the third harmonic component of the reference voltage (Vref_α3-β3) located in the first sector in the α3-β3 plane. For both reference voltages, the vectors (00000, 10000, 11000, 01001, 11101, 11111) are used to utilize them in both α1-β1 and α3-β3 planes as shown in figure 3. The same approach can be applied for other sectors.

III. SENSED OPERATION OF THE FIVE-PHASE DRIVE

Figure 4 shows the vector control structure proposed for the five-phase drive system when using an encoder for feedback i.e. in sensored mode. It can be seen that the third harmonic component is controlled to be zero through putting id3_ref and iq3_ref to zero.

Figure 3. Realization of a reference voltage vector located in sector 1 on the d-q plane and the associated switching sequence

Figure 4. Vector control topology using multi dimensions space vector PWM for five-phase drive
The simulation of the five-phase converter PMSM drive has been carried out using the SABER simulation package. Figure 5 shows the feasibility of the system. At 0.2 s a speed step of 100 rpm is applied to the drive then at t = 0.9 s a load step is applied to the system. In both cases the system drive could recover in short time period.

Figure 5. Sensored operation of the five phase motor

FFT was carried out on the current waveform in time interval between 2 s and 4 s (steady state) to show if there is a third harmonic component in the current or not and the result is given in figure 6. As can be seen from figure 6, the current spectrum only has the fundamental frequency only and the third harmonic does not exist in the current spectrum as its reference values (id3_ref and iq3_ref) are put equal zero.

Figure 6. FFT of the phase currents of the five phase drive under speed control.

IV. ALGORITHM FOR TRACKING THE SATURATION SALIENCY OF FIVE PHASE PMSM

The stator windings self-inductances are modulated by the anisotropy obtained by the saturation saliency of main flux as shown in [23]. This modulation will be reflected in the transient response of the motor line current to the test vector imposed by the inverter. So by using the fundamental PWM wave form and by measuring the transient response to the active vectors it is possible to detect the inductance variation and track the rotor position.

Figure 7 shows the space vector modulation state diagram for a five-phase inverter when V_ref_α1-β1 exists in first sector. The switching sequences and the timing of the applied vectors will be :-

Figure 7. Space vector modulation state diagram for five phase inverter in case that V_ref_α1-β1 exists in first sector

The stator circuit when the vectors V2, V3 and V0 are applied are shown in Figure 8.a, figure 8.b and figure 8.c respectively.

Figure 8. Stator circuits when: (a) V0 is applied; (b) V2 is applied; (c) V3 is applied

Using the circuit in Figure 8.a, the following equations hold true:-

\[
0 = r_s \cdot i_{a}^{(V0)} + l_{ar} \cdot \frac{d}{dt} i_{a}^{(V0)} + e_{a}^{(V0)} - r_s \cdot i_{b}^{(V0)} - l_{ab} \cdot \frac{d}{dt} e_{b}^{(V0)} \quad \ldots \ldots (1)
\]

\[
0 = r_s \cdot i_{b}^{(V0)} + l_{bc} \cdot \frac{d}{dt} i_{b}^{(V0)} + e_{b}^{(V0)} - r_s \cdot i_{c}^{(V0)} - l_{bc} \cdot \frac{d}{dt} e_{c}^{(V0)} \quad \ldots \ldots (2)
\]

\[
0 = r_s \cdot i_{c}^{(V0)} + l_{cd} \cdot \frac{d}{dt} i_{c}^{(V0)} + e_{c}^{(V0)} - r_s \cdot i_{d}^{(V0)} - l_{cd} \cdot \frac{d}{dt} e_{d}^{(V0)} \quad \ldots \ldots (3)
\]

\[
0 = r_s \cdot i_{d}^{(V0)} + l_{de} \cdot \frac{d}{dt} i_{d}^{(V0)} + e_{d}^{(V0)} - r_s \cdot i_{e}^{(V0)} - l_{de} \cdot \frac{d}{dt} e_{e}^{(V0)} \quad \ldots \ldots (4)
\]

\[
0 = r_s \cdot i_{e}^{(V0)} + l_{ea} \cdot \frac{d}{dt} i_{e}^{(V0)} + e_{e}^{(V0)} - r_s \cdot i_{a}^{(V0)} - l_{ea} \cdot \frac{d}{dt} e_{a}^{(V0)} \quad \ldots \ldots (5)
\]
The following equations are obtained using Figure 8.b.-

\[0 = r_a * i_a(V_2) + l_a * \frac{d(i_a(V_2))}{dt} + e_a(V_2) - r_b * i_b(V_2) - l_{ab} * \frac{d(i_b(V_2))}{dt} - e_b(V_2) \quad (6) \]

\[V_{dc} = r_a * i_a(V_2) + l_a * \frac{d(i_a(V_2))}{dt} + e_a(V_2) - r_a * i_a(V_2) - l_{ac} * \frac{d(i_a(V_2))}{dt} - e_a(V_2) \quad (7) \]

\[0 = r_a * i_a(V_2) + l_a * \frac{d(i_a(V_2))}{dt} + e_a(V_2) - r_b * i_b(V_2) - l_{ab} * \frac{d(i_b(V_2))}{dt} - e_b(V_2) \quad (8) \]

\[0 = r_b * i_b(V_2) + l_b * \frac{d(i_b(V_2))}{dt} + e_b(V_2) - r_a * i_a(V_2) - l_{ac} * \frac{d(i_b(V_2))}{dt} - e_a(V_2) \quad (9) \]

Finally when V3 is applied as shown in Figure 8.c, the following equations hold true:

\[0 = r_a * i_a(V_3) + l_a * \frac{d(i_a(V_3))}{dt} + e_a(V_3) - r_b * i_b(V_3) - l_{ab} * \frac{d(i_b(V_3))}{dt} - e_b(V_3) \quad (12) \]

\[V_{dc} = r_a * i_a(V_3) + l_a * \frac{d(i_a(V_3))}{dt} + e_a(V_3) - r_a * i_a(V_3) - l_{ac} * \frac{d(i_a(V_3))}{dt} - e_a(V_3) \quad (13) \]

\[0 = r_b * i_b(V_3) + l_b * \frac{d(i_b(V_3))}{dt} + e_b(V_3) - r_b * i_b(V_3) - l_{ab} * \frac{d(i_b(V_3))}{dt} - e_b(V_3) \quad (14) \]

\[V_{dc} = r_b * i_b(V_3) + l_b * \frac{d(i_b(V_3))}{dt} + e_b(V_3) - r_b * i_b(V_3) - l_{ac} * \frac{d(i_b(V_3))}{dt} - e_a(V_3) \quad (15) \]

Assuming that the voltage drop across the stator resistances are small and the back emf can be cancelled if the time separation between the vectors is small, the position scalars \(P_a, P_b, P_c, P_d \), and \(P_e \) in all sectors are given in table 1.

<table>
<thead>
<tr>
<th>Sect or no</th>
<th>(P_a)</th>
<th>(P_b)</th>
<th>(P_c)</th>
<th>(P_d)</th>
<th>(P_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
<td>(dt)</td>
<td>(d(i_e(V_0)))</td>
</tr>
<tr>
<td>2</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
<td>(dt)</td>
<td>(d(i_e(V_0)))</td>
</tr>
<tr>
<td>3</td>
<td>(-P_a +P_b+P_c)</td>
<td>(dt)</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
</tr>
<tr>
<td>4</td>
<td>(-P_a +P_b+P_c)</td>
<td>(dt)</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
</tr>
<tr>
<td>5</td>
<td>(-P_a +P_b+P_c)</td>
<td>(dt)</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
</tr>
<tr>
<td>6</td>
<td>(-P_a +P_b+P_c)</td>
<td>(dt)</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
</tr>
<tr>
<td>7</td>
<td>(-P_a +P_b+P_c)</td>
<td>(dt)</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
</tr>
<tr>
<td>8</td>
<td>(-P_a +P_b+P_c)</td>
<td>(dt)</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
</tr>
<tr>
<td>9</td>
<td>(-P_a +P_b+P_c)</td>
<td>(dt)</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
</tr>
<tr>
<td>10</td>
<td>(-P_a +P_b+P_c)</td>
<td>(dt)</td>
<td>(d(i_a(V_0)))</td>
<td>(dt)</td>
<td>(d(i_c(V_0)))</td>
</tr>
</tbody>
</table>

V. RESULTS AND ANALYSIS

A. Position and Speed Estimation Under Sensored Operation

The validation of the saliency tracking algorithm given in table 1 is made using the vector control structure working in sensored mode shown in figure 9. The mechanical observer [13] is used to filter out the high frequency noise in the position signals. The whole vector control structure has been implemented in simulation in the Saber modeling environment. Note the simulation includes a minimum pulse width of 10µs when \(dt \)
measurements are made – a realistic values seen from experimental results of [18].

The results shown in figure 10 demonstrate the validity of the saliency tracking algorithm. The motor was working at zero speed and at no load. At t=0.25 s a speed step change from 0 rpm to 60 rpm was applied to the system. Then at t=0.75 s a load step is applied to the system. After that between t=3 s and t=4 s a zero speed was applied to the system and finally at t=4s a speed step change from 0 rpm to 60 rpm was applied to the system. The results show that the motor responded to the load and speed steps very fast and the proposed algorithm could track the saturation saliency (2²fe) both at no load at load conditions and more importantly at low and zero speeds.

The speed control for a five-phase PM machine drive has been implemented in simulation in the Saber modeling environment. This estimated speed \(\omega_r \) and position \(\theta_r \) are used to obtain a fully sensorless speed control as shown in figure 11.

Figure 11. the sensorless vector control structure for the five-phase inverter PMSM drive

Figure 12 demonstrate the stability of the fully sensorless system when a load disturbance where applied at low speed (50 rpm). The motor was working at 50 rpm and no load. Then a full load step is applied to the motor between t=1 s and t=3 s. Between t=3 s and t=4 s the load is removed and the motor became working at no load. After that at t=4s a speed step of 50 rpm is applied to the motor. Between t=5 s and t=7s a negative full load step was applied. Finally at t=7s the load is removed and the motor returned to work at no load. The results shows that the system maintained the speed in all the cases.

Figure 13 shows the results of a fully sensorless speed control of a five phase PMSM motor driven by a five phase inverter at a half load condition using the algorithm presented in this paper.
The motor was working in sensorless mode at speed =0.5 Hz then at time t=6 s a speed step change from 0.5 Hz to 0 rpm (till t=8 s) is applied to the system. Figure 13 shows that the motor responded to the speed step with a good transient and steady state response.

![Figure 13 Fully Sensorless Speed Steps between 0.5 Hz,0 to 0.5 Hz at half load.](image1)

VI. CONCLUSION

This paper has outlined a new scheme for tracking the saliency of motor fed by a five-leg inverter in through measuring the dynamic current response of the motor line currents due the IGBT switching actions. The proposed method includes software modification to the method proposed in[18] to track the saliency of the motor fed by three phase inverter. The new strategy can be used to track the saturation saliency in PM and the rotor slotting saliency in induction motors. The results have shown the effectiveness of the new method in increasing the safety measures in critical systems needs a continued operation.

REFERENCES

[17] Holtz J, Julien J. Sensorless acquisition of the rotor position angle of induction motors with arbitrary stator

