Gas-phase reaction kinetics of 1,3-disilacyclobutane in a hot-wire chemical vapor deposition reactor
نوع المنشور
بحث أصيل
المؤلفون

The reaction kinetics of the decomposition of 1,3-disilacyclobutane (DSCB) was investigated using a hot-wire chemical vapor deposition reactor. The reaction products were monitored using a vacuum ultraviolet laser single-photon ionization source coupled with a time-of-flight mass spectrometer. Steady-state approximation was used to determine the rate constants for three main decomposition pathways of DSCB: the exocyclic H2 elimination (k1), the cycloreversion (k2), and the ring-opening via 1,2-H shift (k3). Separate k2 and k3 were not obtained, but 2k2 + k3 and k1 were determined. The activation energy (Ea) for the exocyclic H2 elimination reaction was determined to be 63.5 kJ·mol− 1. Compared to the Ea value of 43.6 kJ·mol− 1 previously obtained under collision-free conditions at much lower pressures, the value from this work is higher. This is attributed to the filament aging caused by the formation of silicon carbide (SiC) and tungsten sub-carbide (W2C) on the wire surface. The heterogeneous reactions on the metal surface also led to a much faster decay constant, koverall, for DSCB than those for each individual decomposition pathway, k1 and 2k2 + k3.

المجلة
العنوان
Thin Solid Films
الناشر
Elsevier
بلد الناشر
الولايات المتحدة الأمريكية
Indexing
Scopus
معامل التأثير
None
نوع المنشور
Both (Printed and Online)
المجلد
--
السنة
2015
الصفحات
239–243